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Muscles are composite structures. The protein filaments responsible for force
production are bundled within fluid-filled cells, and these cells are wrapped
in ordered sleeves of fibrous collagen. Recent models suggest that the mech-
anical interaction between the intracellular fluid and extracellular collagen is
essential to force production in passive skeletal muscle, allowing the
material stiffness of extracellular collagen to contribute to passive muscle
force at physiologically relevant muscle lengths. Such models lead to the
prediction, tested here, that expansion of the fluid compartment within
muscles should drive forceful muscle shortening, resulting in the production
of mechanical work unassociated with contractile activity. We tested this
prediction by experimentally increasing the fluid volumes of isolated bull-
frog semimembranosus muscles via osmotically hypotonic bathing
solutions. Over time, passive muscles bathed in hypotonic solution widened
by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles
shortened by 2.13 ± 0.75% along their line of action, displacing a force-regu-
lated servomotor and doing measurable mechanical work. This behaviour
contradicts the expectation for an isotropic biological tissue that would
lengthen when internally pressurized, suggesting a functional mechanism
analogous to that of engineered pneumatic actuators and highlighting the
significance of three-dimensional force transmission in skeletal muscle.
1. Introduction
Muscle contraction is a three-dimensional process, involving energy flow in
directions other than the muscle’s line of action. Individual muscle fibres, for
example, necessarily undergo changes in radius as they stretch or shorten
because they are filled with a nearly incompressible fluid. For some engineered
pneumatic actuators, such three-dimensional deformations are at the core of the
forceful shortening process. McKibben pneumatic actuators, for example, con-
vert radial bulging and volumetric expansion into longitudinal shortening
[1,2]. McKibben actuators comprise an elastic cylindrical bladder reinforced
by a braided sleeve of helically oriented fibres. When pressurized internally,
the expansion of the elastic bladder widens the sleeve radially, causing the
sleeve, and the actuator as a whole, to forcefully shorten.

Biological muscles are not McKibben actuators. Force production in skeletal
muscle results from the interaction of actin and myosin proteins operating
within muscle sarcomeres and is not the product of volumetric expansion.
However, muscles share some important features with McKibben actuators.
Both experience radial expansion accompanying their shortening, and both
are wrapped by a ‘sleeve’ of fibrous material. In skeletal muscle, a robust net-
work of collagen fibres in the extracellular matrix (ECM) surrounds fibres
and fascicles, in an arrangement analogous to the fibre sheath and bladder
arrangement of a McKibben actuator [3]. Some ancient theories of muscle
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contraction, such as the one proposed by Erasistratus circa
250 B.C., postulated a McKibben-like action for muscle in
which volumetric expansion of cells causes forceful shorten-
ing of the tissue [4]. These theories were dismissed early
and succeeded by the modern sliding filament theory of
muscle contraction [5–7]. Recent observations, however, indi-
cate that interactions between the ECM and fluid can
influence muscle force output under both active and passive
[8–10] conditions. These studies suggest that fluid pressures
within a muscle, through interactions with the collagenous
ECM, can be converted into longitudinal forces oriented
along the line of action of the muscle, a process reminiscent
of the mechanism underlying pneumatic McKibben actuators.

Increasing the volume of an isotropic biological structure,
such as a single isolated cell, would be expected to result in
forceful expansion in all directions. Here, however, we test
the prediction that volumetric expansion can drive forceful
shortening of skeletal muscle tissue as a whole. Using hypo-
tonic bathing solutions, we drove water into isolated skeletal
muscles held at constant tension via a servomotor. We calcu-
lated mechanical work done by muscles as their fluid
volumes were increased and report the effects of volume
increase on muscle length and width. The behaviour of
muscle is compared to that of a mathematical model of a
simplified pneumatic McKibben actuator.
2. Methods
Osmotic perturbations were performed on isolated left semimem-
branosus muscles of the American bullfrog [Rana catesbeiana
(Shaw, 1802)] (n = 8). The semimembranosus was chosen for its
relatively parallel-fibred architecture, large size and superficial
location [11,12]. All use was approved by the Brown University
Institutional Animal Care and Use Committee. Animals were
euthanized using an isoflurane overdose followed by double-
pithing. Muscles were carefully removed by dissection and
attached to a servomotor (305B, Aurora Scientific Inc., Ontario,
Canada) via a Kevlar thread and chain connected to the distal
semimembranosus tendon. The proximal end of each muscle
was left attached to a sliver of hip bone held stationary in a
custom clamp. Isolated muscles were bathed in a chamber of
physiological Ringer’s solution which could be removed and
replaced without touching or displacing the muscle. A video
camera (Flare 12MCX, IO Industries) oriented perpendicular to
the superficial aspect of the muscle belly recorded frontal views
of muscles during all experiments.

Hypotonic Ringer’s solutions have been used previously to
increase muscle fluid volume, as they create an osmotic gradient
that causes water to enter muscle tissue over time [8,13–15]. Two
different Ringer’s solutions were used in the present study: a
standard Ringer’s solution isotonic to amphibian muscle tissue
(115 mmol l−1 NaCl, 2.5 mmol l−1 KCl, 1.0 mmol l−1 MgSO4,
20 mmol l−1 imidazole, 1.8 mmol l−1 CaCl2, 11 mmol l−1 glucose,
pH 7.9) and a diluted Ringer’s solution hypotonic to amphibian
muscle tissue (23 mmol l−1 NaCl, 0.5 mmol l−1 KCl, 0.2 mmol l−1

MgSO4, 4.0 mmol l−1 imidazole, 1.8 mmol l−1 CaCl2, 2.2 mmol l−1

glucose, pH 7.9). Ca2+ was left undiluted in the hypotonic
solution, as changing Ca2+ concentration resulted in sporadic
twitching of isolated muscles. All measurements were conducted
at room temperature of 21.4–21.6°C and a thermocouple was
used to monitor the temperature in the Ringer’s solution.

Muscles were first placed in isotonic Ringer’s solution and
regulated at a constant stress of 0.14 N cm−2 via subtle changes
in length prescribed by the servomotor (in force control mode).
This stress could be reliably maintained by the servomotor
without the risk of passively overstretching the muscle. Muscle
cross-sectional areas were approximated from measurements of
the muscle width midway along the length of the muscle, assum-
ing an ellipsoidal cross-sectional shape where a and b are the
ellipse semi-major and semi-minor axes, respectively.

A ¼ pab ð2:1Þ

Muscles remained in isotonic solution for a period of 30 min,
over which they settled into a steady, unchanging length. The iso-
tonic solution was then replaced with hypotonic solution, and
motor position and muscle width were measured for 1 h.
Muscles were returned to isotonic Ringer’s solution for an
additional hour following the hypotonic perturbation.

Length and force data were sampled at a frequency of
1000 Hz with a PowerLab DAQ and LabChart software (Power-
Lab 16/35, ADInstruments, Colorado Springs, CO, USA). Muscle
width was measured post-experiment from the video recordings
using ImageJ, at a location approximately one-third of the muscle
length away from the attachment of the hip. Muscle width was
used as an indicator of changes in muscle volume.

All length and width data were normalized to the initial
length ðL0Þ and width ðW0Þ at the regulated force in isotonic
Ringer’s solution. Length and width strain were calculated
using the following equations, where L and W are the length
and width of the muscle at each data collection point:

1L ¼ L� L0
L0

, ð2:2Þ

1W ¼ W �W0

W0
: ð2:3Þ

Work was calculated as the product of the prescribed force
and measured length change in the longitudinal direction.
3. Results
We found that muscle shortened forcefully over time when
placed in a hypotonic solution and re-lengthened to a value
close to resting length upon return to an isotonic Ringer’s sol-
ution (figure 1a). Increases in muscle width coincided with
decreases in muscle length, while force was maintained con-
stant throughout the trial (figure 1b,c). The shapes of both the
length and width over time curves showed a plateau towards
the end of the 1 h hypotonic treatment. This was expected, as
the concentration difference between the hypotonic Ringer’s
solution and the muscle’s internal ionic composition should
decay exponentially with time.

Skeletal muscle and engineered McKibben muscles show
similarities in both structural organization and strain patterns
(figure 2). Both muscles and McKibben actuators involve a
fibrous sleeve surrounding a fluid-filled compartment or
compartments (figure 2a,c). As muscle volume was perturbed
osmotically, there was an approximately linear relationship
between width strain and longitudinal strain (figure 2b).
Average maximum longitudinal strain was −2.13 ± 0.75%
(mean ± s.d.). Average maximum width strain was 16.44 ±
3.66%. Average maximum work done in the shortening direc-
tion was 0.155 ± 0.056 mJ. A simple model of McKibben
muscles also shows a linear relationship between width
strain and longitudinal strain (figure 2d ), which varies
depending on the initial angle of fibres in the sleeve. Raw
data are available and a detailed description of the model is
included as electronic supplementary material [16].
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Figure 1. Representative data from an isolated semimembranosus muscle bathed in hypotonic solution (20% normal concentration) for 1 h. Inset images taken at 0,
0.5 and 1 h in hypotonic solution demonstrate muscle width changes. Red vertical lines denote baseline muscle width (excluding extraneous connective tissue) at
the introduction of hypotonic solution. Muscle length decreases (a) and muscle width increases (b) with time. Muscle reverts to its original length and width upon
return to isotonic solution. Passive muscle force is held constant throughout the experiment (c ). The spikes in length at 0.25 and 0.95 h were due to spontaneous
twitches in the muscle.
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4. Discussion
We found that as a muscle takes in water from a surrounding
hypotonic bath, it swells radially and shortens longitudinally.
These results demonstrate that muscle tissue can shorten pas-
sively under constant force, with all input energy being
derived from the movement of water into the muscle, hence
the term ‘osmotic engine’. This result is surprising, as
volume increases are typically associated with increases in
both the width and length of flexible biological tissues.
Leeches, for example, elongate and widen simultaneously
as they swell during feeding [17,18]. Our results suggest
that muscle can transmit strains in the radial direction to
strains in the longitudinal direction. We propose that inter-
actions between intramuscular fluid and extracellular
collagen fibres mediate this process, via a functional mechan-
ism analogous to shortening in a McKibben actuator. As a
McKibben actuator is pressurized and swells radially, its rein-
forcing fibres reorient to become more perpendicular to the
long axis of the actuator, ultimately decreasing its length
(figure 2c). A simple mathematical model of a McKibben
actuator with the dimensions of an isolated semimembrano-
sus muscle shows a similar qualitative relationship between
length and width with volume increase to that observed in
biological muscle (figure 2d and electronic supplementary
material, figure S1).
A growing body of evidence suggests that muscles and
McKibben actuators share functional properties under
specific sets of conditions. Mathematical models of muscle
ECM morphology suggest that fluid–ECM interactions
serve to load collagen fibres in tension during longitudinal
stretching of passive skeletal muscle [3,19]. In accordance
with these models, passive muscle tension has been shown
empirically to vary with intramuscular fluid volume [8,9],
and active contractile force has been shown to be influenced
by variations in intramuscular fluid pressure [10]. These
behaviours are replicated by simple physical models of
fibre-wound cylinders mechanically similar to McKibben
actuators [8–10]. The current work lends novel support to
the idea that fluid–ECM interactions can influence both
muscle force and shape.

Biological muscle is far more complex than the idealized
McKibben-like treatment described here. Collagen in biologi-
cal muscle, for example, is wavy and extensible while the
fibres of our simple McKibben mathematical model do not
change in length. Uncrimping of collagen fibres may provide
an alternative mode of volume accommodation that is not
accounted for by our mathematical model. Additionally,
ECM morphology varies greatly both between and within
organisms, and across spatial scales within individual
muscles [20]. The behaviour of our simple mathematical
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Figure 2. Skeletal muscles and McKibben actuators share similarities in structure as well as in their strain response to a change in volume. (a) Scanning electron
micrograph showing cross-sectional views of decellularized frog muscle endomysium (En) and perimysium (P) adapted from Sleboda et al., 2020 with permission
from John Wiley & Sons [20]. Diagrammatic representation of skeletal muscle, showing the tissue’s hierarchical structure, and the extracellular matrix elements that
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individuals and the solid line shows a mean. (c) Schematic of a McKibben actuator, showing an idealized braided sleeve which is analogous to the ECM of biological
muscle. (d ) Idealized McKibben muscle model prediction of shape change for an actuator with the same dimensions as the frog semimembranosus, for a range of
initial collagen fibre angles.
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model is sensitive to certain assumptions such as the initial
wrapping angle of collagen within the muscle (figure 2d ),
which in the current study are only approximations. Further-
more, unlike the idealized McKibben actuator, biological
muscle is viscoelastic, anisotropic, and almost always irregu-
larly shaped. Future experiments that measure volume-
dependent passive muscle properties while disrupting the
mechanical properties of extracellular collagen may confirm
its role in mediating this energy transmission.

The work done by our ‘osmotic engine’, 0.051 J kg−1

muscle mass, is exceedingly small compared to the mass-
specific work done by an active frog hindlimb muscle
which can be as much as 49.8 J kg−1 in vivo [21]. We do
not mean to suggest that muscles behave exactly like
McKibben actuators in vivo. However, the principle of trans-
lating radial to longitudinal strains may play a role in a
variety of in vivo activities. While muscle is thought to be iso-
volumetric on the timescale of an individual contraction,
muscles do undergo volume changes of up to 17% during
states such as prolonged exercise [14,22]. During more typical
muscle function, spatially inhomogeneous intramuscular
pressures develop causing fluid movement and significant
local radial bulging [23–26]. Our results suggest that this
local radial bulging may contribute to overall muscle
shortening, depending on collagen fibre geometry. More
broadly, the current experiments suggest that off-axis forces
acting on muscle from external surrounding tissues in the
muscle compartment or internal pressure may appreciably
affect work produced in the shortening direction, not just
force. This observation is consistent with results from exper-
iments that show both off-axis work and a reduction
in muscle line-of-action work when transverse loads are
applied [27–29].

Fibre-wound cylinder models of skeletal muscle have
expanded our biomechanical view of muscle as more than
just a uniaxial motor. The transmission of force and strain
within muscle tissue between contractile elements and
internal elastic structures is complex and three-dimensional.
Fluid–ECM interactions may provide pathways for intramus-
cular energy flow not accounted for by most conceptual
models of muscle mechanics and are a promising area for
further research.
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